Notizen

Über die Bildung zweier ungewöhnlicher mehrkerniger Eisen-Komplexe

Udo Eberhardt **, Günter Mattern^b und Günter Schiller^b

Institut für Organische Chemie^a und Institut für Kristallographie^b der Universität Karlsruhe (TH), Postfach 6980, D-7500 Karlsruhe 1

Eingegangen am 4. Februar 1988

On the Formation of Two Unusual Multinuclear Iron Complexes

The reaction of $KFe(CO)_3NO(1)$ with PhCOCI (2) afforded the dinuclear iron complex 8; in the presence of PPh₃ (12), the trinuclear complex 13 was formed. The structures of both compounds were determined by X-ray diffraction.

Die Darstellung von stabilem Acetyldicarbonylnitrosyl(triphenylphosphan)eisen sowie der Nachweis von instabilem Benzoyldicarbonylnitrosyl(triphenylphosphan)eisen durch Reaktion von Natrium-tricarbonylnitrosylferrat mit Acetylchlorid bzw. Benzoylchlorid in Gegenwart von Triphenylphosphan sind schon lange bekannt¹).

Beim Studium des Verhaltens von Kalium-tricarbonylnitrosylferrat (1) gegenüber Reagentien, die elektrophile Kohlenstoff-Atome enthalten, erhielten wir bei der Reaktion mit Benzoylchlorid (2) die bisher unbekannte Verbindung 8 in Form tiefvioletter Kristalle. Das ¹H-NMR-Spektrum weist durch Multipletts bei $\delta = 7.26 - 7.48$ und $\delta = 7.58 - 7.99$ auf zwei verschiedene Phenyl-Ringe hin; das IR-Spektrum zeigt CO- und NO-Schwingungsbanden bei $\tilde{v} = 2070 - 1980$ cm⁻¹ bzw. $\tilde{v} = 1770 - 1730$ cm⁻¹. Die Struktur konnte mit Hilfe der Röntgenstrahlbeugung am Einkristall ermittelt werden. Das Schema zeigt einen plausiblen Bildungsmechanismus dieser Verbindung, die als ein isomerisiertes Dimeres des Benzoyldicarbonylnitrosyleisen (4) angesehen werden kann: Zunächst muß vor oder während der Dimerisierung die Abspaltung jeweils einer CO-Gruppe erfolgen. Die Erfüllung der Edelgasregel an den beiden Eisen-Atomen muß zu einem CO/NO-Austausch (vermutlich über μ^2 -Komplex 5) und Bildung zweier Metallacyclen führen. Dabei greift das Sauerstoff-Atom der an der Fe(CO)(NO)₂-Einheit gebundenen Benzoyl-Gruppe das Kohlenstoff-Atom der anderen Benzoyl-Gruppe nucleophil an (7); gleichzeitig erfolgt die Verschiebung der zugehörigen Eisen – Kohlenstoff-Bindung und Absättigung der verzerrt-oktaedrischen Koordinationssphäre am Fe1 durch den verbleibenden Benzoyl-Sauerstoff (Abb. 1).

Am Fe2 findet man eine verzerrte tetragonale Pyramide, deren Basis durch Fe1, C4, C5 und N2 gebildet wird. Ungewöhnlich sind der lange C5-O7-Abstand der ursprünglichen Benzoylcarbonyl-Gruppe von 146.9 pm und der kurze C12-O7-Abstand der neu gebildeten Bindung von 130.8 pm (Tab. 2). Wie im Schema angegeben, könnte auch zuerst eine Verbrückung mit anschließendem Ligandenaustausch stattfinden $(9 \rightarrow 10 \rightarrow 11)$.

Versuche, den dimerisierten Liganden vom Komplex abzulösen und in Form eines Benzoesäure-benzylester-Derivats nachzuweisen, gelangen bisher nicht.

Während es viele Beispiele für einkernige Acyleisen-Komplexe mit interessanten Anwendungsmöglichkeiten gibt²⁻⁴), existieren nur

Chem. Ber. 121, 1525-1529 (1988)
© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0808-1525 \$ 02.50/0

wenige nitrosylhaltige Acyleisencarbonyl-Komplexe^{1,5)} und Acylüberbrückte, nitrosylfreie, zweikernige Eisencarbonyl-Komplexe⁹⁾. Außerdem sind einige Methylen-⁷⁾ und Phosphan-überbrückte⁸⁾, nitrosylfreie, zweikernige Eisencarbonyl-Komplexe, ein Methylen-

beträgt 126.8 pm. Es handelt sich bei diesem Komplex, dessen Bildung wir uns bisher mechanistisch noch nicht erklären können, um einen Carbonyl- und Nitrosyl-haltigen Trieisennitrido- bzw. -imido-Komplex; es sind nur wenige Vertreter dieser Substanzklasse bekannt¹².

Abb. 1. Molekülstruktur von 8 (Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

und Diphosphan-überbrückter, carbonylfreier, zweikerniger Eisennitrosyl-Komplex⁹⁾ und ein Phosphan-überbrückter, dreikerniger Eisencarbonylnitrosyl-Komplex¹⁰⁾ bekannt. Einfache Dieisencarbonylnitrosyl-Komplexe wurden bisher nicht gefunden¹¹⁾; die hier dargestellte Verbindung 8 ist das erste Beispiel eines Kohlenstoffüberbrückten, zweikernigen Eisencarbonylnitrosyl-Komplexes.

Wird KFe(CO)₃NO (1) mit PhCOCl (2) in Gegenwart von PPh₃ (12) umgesetzt, so wird nicht 8 erhalten; stattdessen läßt sich neben Mischkristallen von Fe(CO)₄(PPh₃)/Fe(CO)(NO)₂(PPh₃) eine weitere bisher unbekannte Verbindung 13 in Form schwarzer Kristalle isolieren. Das ¹H-NMR-Spektrum deutet durch ein Multiplett bei $\delta = 7.50-7.80$ auf das Fehlen einer Benzoyl-Gruppe und die Anwesenheit einer Triphenylphosphan-Einheit hin; das IR-Spektrum zeigt acht CO-Schwingungsbanden bei $\tilde{v} = 2050-1870$ cm⁻¹ und eine NO-Schwingungsbande bei $\tilde{v} = 1750$ cm⁻¹. Aufgrund von Molmassenbestimmung und Verbrennungsanalyse enthält das Molekül noch ein weiteres Stickstoff-Atom.

Auch hier zeigte erst die Röntgenstrahlbeugung am Einkristall die Molekülstruktur: Es handelt sich um einen dreikernigen Eisen-Komplex mit sieben terminalen CO-Gruppen, einer asymmetrischen μ^2 -CO-Gruppe (Fe3-C8: 178.5 pm, Fe2-C8: 240.9 pm; Tab. 4) mit $\tilde{v} = 1870$ cm⁻¹ im IR-Spektrum und einer terminalen NO-Gruppe; der Fe₃-Ring wird μ^3 -artig durch eine Ph₃PN-Gruppe pyramidal überbrückt (Abb. 2).

Die Annahme von Ph₃PC- und Ph₃PO-Gruppen, die mit IR- und Analysendaten schwer in Einklang zu bringen sind, ergab auch bei den Verfeinerungsrechnungen schlechtere Ergebnisse.

Der P-N1-Abstand von 162.9 pm liegt im Bereich zwischen einer Einfach- und Doppelbindung; die drei Bindungen Fe1-N1, Fe2-N1 und Fe3-N1 sind mit 194.2, 194.9 und 193.2 pm fast gleich lang (Tab. 4); der Abstand zwischen N1 und der Fe₃-Ebene

Abb. 2. Molekülstruktur von 13 (Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Zur Unterscheidung zwischen CO- und NO-Gruppen im Verlauf der Strukturermittlungen wurden neben den Unterschieden der isotropen Temperaturfaktoren und den M-C/N-O-Winkeln hauptsächlich die durchweg kürzeren M-N- und C-O-Abstände im Vergleich zu den längeren M-C- und N-O-Abständen herangezogen (für M = Mo siehe Lit.¹³).

Für die Aufnahme vieler Spektren und die Durchführung zahlreicher Analysen danken wir Herrn F. Dahlinger (Institut für Anorganische Chemie der Universität) sowie Frau P. Lang, Frau I. Mayer, Frau I. Süß und Herrn U. Tanger (Institut für Organische Chemie der Universität); U. E. dankt der Deutschen Forschungsgemeinschaft für die Unterstützung eines Teils dieser Arbeit durch Gewährung eines Stipendiums.

Experimenteller Teil

Allgemeines: Säulen-Chromatographie (SC): Kieselgel 60 für die SC, Korngröße 0.040 - 0.063 mm (Merck). – Schmelzpunktbestimmung (unkorrigiert) im abgeschmolzenen Röhrchen unter Argon (Schmp.): Kofler-Heiztisch-Mikroskop (Reichert). – IR-Spektroskopie, KBr-Preßling (IR): Acculab 8 (Beckman). – ¹H-NMR-Spektroskopie, 250 MHz, in CDCl₃ mit TMS als internem Standard (¹H-NMR): Cryospec WM 250 (Bruker). – ¹³C{¹H}-NMR-Spektroskopie, 62.90 MHz, in CDCl₃ (gleichzeitig Standard) (¹³C-NMR): Cryospec WM 250 (Bruker). – ³¹P-NMR-Spektroskopie, 121.49 MHz, in CDCl₃ mit H₃PO₄ als externem Standard (³¹P-NMR): WH 300 (Bruker). – Massenspektrometrie, 70 eV (MS): MAT CH-5 (Varian). – Molmassenbestimmung in CHCl₃ bei 45°C: Dampfdruckosmometer (Knauer). – Einentar-Analytik: Elemental Analyzer 1104 (Carlo Erba). – Einkristall-Röntgenstrahlbeugungs-Un-

Tab. 1. Kristall- und Zelldaten von 8 und 13

	8	13
Summenformel	C ₁₈ H ₁₀ Fe ₂ N ₂ O ₈	C ₂₆ H ₁₅ Fe ₃ N ₂ O ₉ P
Molmasse [gmol ⁻ ']	493.98	697.93
Kristallabmessungen [mm]	0.29, 0.22, 0.17	0.38, 0.43, 0.48
Gitterkonstanten [pm] a	836.2(4)	984.8(4)
Ь	859.0(5)	2931.6(1.3)
C	1432.1(8)	1064.1(4)
Winkel ["] a	74.86(4)	90
β	86.24(4)	115.25(3)
γ γ	77.69(4)	90
Zellvolumen [pm']	970.08 · 10°	2778.57 · 10°
Molekulzahi in Zelle	2	4
Berechnete Dichte [gcm ⁻³]	1.69	1.67
Raumgruppe	P1	$P2_1/n$
Strahlung, Monochromator;	Mo- K_{α} , Graphit;	Mo-K _x , Graphit;
Wellenlänge [pm]	71.069	71.069
Reflexzahl zur Verfeinerung		
der Orientierungsmatrix;	24;	24;
Bereich	$5.0^{\circ} < 2\Theta < 30.5^{\circ}$	$7.4^{\circ} < 2\Theta < 25.6^{\circ}$
Mellmethode	Wyckoff	Wyckoff
	(optimierter ω-scan)	(optimierter ω-scan)
Meßtemperatur [°C]	-73	23
Meßgeschwindigkeit		
	4~16	5-25
Melbereich:	$5^{\circ} < 2\Theta < 72^{\circ};$	$5^{\circ} < 2\Theta < 60^{\circ}$
min./max. h, k, l	-13/+13, -2/+14, -22/+23	-13/+12, 0/+41, -12/+14
Reflexzahl mit $I > 3\sigma(I)$;		
gemessen, symmetrieunabhängig	9224, 5765	13214, 5130
Zahl der Check-Reflexe;	3;	3;
Intervall, Variation	alle 150 Reflexe, insignifikant	alle 150 Reflexe, insignifikant
Linearer Absorptionskoeffizient		
[cm ⁻¹]	15.42	16.56
F(000)	496	1400
Absorptionskorrektur;	empirisch;	empirisch;
R(Merg)	1.89%	2.02%
Max/Min. Transmission	0.750/0.576	0.940/0.693
Lösungsmethode	Patterson	Direkte
Verfeinerungsmethode	Cascade block	Cascade block
Zahl der Least-Squares-		
Parameter	312	431
Verhältnis		
Fo-Zahl/Parameter-Zahl	18	12
R (isotrop)	9.90%	9.48%
R	3.55%	3.23%
R _w	3.73%	3.37%
w	$[\sigma(F)^2 + 0.0005 \cdot F ^2]^{-1}$	wie bei 8
Goof	1.218	1.144
Extinktionsparameter E		
in $F_{\rm corr} =$		
$F/(1 + 0.002 \cdot E \cdot F^2/\sin 2\Theta)^{0.25}$	$0.6(1.3) \cdot 10^{-4}$	7.2(0.6) 10-4
Mean (Max.) shift/e.s.d.	0.008 (-0.034	0.053 (0.152
	für Gesamtmaßstab)	für Y/B C5)
Difference map, max.		
[pm ⁻³] (in der Nähe von Fe1)	0.74 · 10 ⁻⁶ e [⊖]	$0.38 \cdot 10^{-6} e^{\Theta}$

tersuchungen: Vierkreis-Diffraktometer Syntex R3 (Nicolet), Computer Nova 3 (Data General), SHELXTL-Programmsystem¹⁴⁾. – Sämtliche Operationen wurden unter Sauerstoff-freiem, trockenem Argon durchgeführt. – Die Darstellung von 1 erfolgte mit Abwandlungen nach Lit.¹⁵⁾: Reaktion in THF/H₂O ergab eine fast quantitative Ausbeute; das gelbe Pulver ist in trockenem Zustand an der Luft *pyrophor*.

Dieisen-Komplex 8: Zu einer kräftig gerührten Suspension von 1 (2.09 g, 10.00 mmol) in 35 ml trockenem Ether tropfte man bei Raumtemperatur 2 (1.16 ml, 10.00 mmol). Ohne daß Gasentwicklung beobachtet werden konnte, wurde die Lösung allmählich dunkler. Nach 3 h wurde von KCl und anderen polaren, unlöslichen (Zersetzungs-)Produkten abfiltriert (über SiO₂) und das Lösungsmittel im Rotationsverdampfer abgezogen; beim Zuströmen von Argon traten braune Dämpfe [NO₂, Fe(CO)₅] durch Zersetzung auf. Die dunkelrote, ölige Flüssigkeit wurde ca. 12 h bei -18 °C aufbewahrt, wobei sie teilweise erstarrte. Die Masse wurde an SiO₂ mit *n*-Pentan chromatographiert; die orangerote Bande ergab als einzige nach Abdampfen des Lösungsmittels und Umkristallisation

aus CH₂Cl₂/*n*-Hexan 0.35 g (0.71 mmol, 14%) tiefviolette, glitzernde Kriställchen vom Schmp. 120°C (Zers.). – IR: $\tilde{\nu} = 2070 \text{ cm}^{-1}$, 2010, 1980, 1770, 1730, 1600, 1570, 1380, 860, 840, 710, 690, 640. – ¹H-NMR: $\delta = 7.97$ (m, 2H), 7.74 (m, 2H), 7.61 (m, 1H), 7.44 (m, 4H), 7.30 (m, 1H). – ¹³C-NMR: $\delta = 223.8$, 209.4, 209.2, 207.0, 176.7, 153.7, 134.8, 129.9, 129.0, 128.6, 127.2, 125.2, 124.5. – MS: *m/z* (%) = 466 (3) [M⁺ – CO], 103 (100).

$C_{18}H_{10}Fe_2N_2O_8$ (494.0)					
Ber. C 43.77 H 2.04 Fe 22.61	N 5.67				
Gef. C 43.66 H 1.89	N 5.67				
Gef. C 44.96 H 2.15 Fe 23.55	N 5.61*)				

Tab	2	Binduns	oslängen.	[mm]	in 3	R
i ao.	<i>_</i> .	Dingang	soungen	[pm]	111 1	

Fel-Fe2	262.4	Fel-Cl	184,3(2)
Fel-C2	176.4(2)	Fel-C3	180.9(2)
Fel-C5	194.9(2)	Fe1-08	197.6(1)
Fe2-C4	185.2(2)	Fe2-C5	206.4(2)
Fe2-N1	166.4(2)	Fe2-N2	165.5(2)
C1-01	113.2(2)	C2-02	114.3(2)
C 3-03	113.2(3)	C4-04	113.7(2)
C5-C6	148.4(2)	C 5 - 0 7	146.9(2)
C6-C7	140.1(3)	C6-C11	139.8(2)
C7-C8	138,4(3)	C8-C9	(138.5(3)
C9-C10	138.0(3)	C10-C11	139.2(3)
C12-C13	146.9(2)	C12-07	130.8(2)
C12~08	124.5(2)	C13-C14	138.7(2)
C13-C18	139.1(3)	C14-C15	138.4(3)
C15-C16	138.7(3)	C16-C17	137.5(3)
C17-C18	138.2(3)	N1-05	117.2(3)
N2 - 06	117.0(3)	С-Н	87.0-96.2(2.2-3.1)

Tab. 3. Bindungswinkel [°] in 8

Fe2-Fe1-C1	114.1(1)	Fe2-Fe1-C2	84.3(1)
Cl-Fel-C2	89,5(1)	Fe2-Fe1-C3	144.8(1)
Cl-Fel-C3	100.8(1)	C2-Fel-C3	92.1(1)
Fe2-Fe1-C5	51.1(1)	C1-Fe1-C5	162.2(1)
C2-Fel-C5	97.7(1)	C3-Fe1-C5	95.2(1)
Fe2-Fe1-08	89.3	C1-Fe1-08	88.9(ľ)
C2-Fel-08	172.1(1)	C3-Fe1-08	95.8(1)
C5-Fel-08	81.6(1)	Fel~Fe2-C4	75.1(1)
Fel-Fe2-C5	47.3	C4-Fe2-C5	120.8(1)
Fel-Fe2-Nl	113.0(1)	C4-Fe2-N1	105.5(1)
C5-Fe2-N1	108.2(1)	Fel-Fe2-N2	123.5(1)
C4-Fe2-N2	104.4(1)	C5-Fe2-N2	98.0(1)
N1-Fe2-N2	120.8(1)	Fel-Cl-01	179.1(2)
Fel-C2-02	177.3(2)	Fel-C3-03	176,7(2)
Fe2-C4-04	171.0(2)	Fel-C5-Fe2	81.6(1)
Fel-C5-C6	132.1(1)	Fe2-C5-C6	117.4(1)
Fel-C5-07	108.0(1)	Fe2-C5-07	109.0(1)
C6-C5-07	105.9(1)	C5-C6-C7	121.1(1)
C5-C6-C11	121.7(2)	C7-C6-C11	117.2(2)
C6-C7-C8	121.5(2)	C7-C8-C9	120.5(2)
C8-C9-C10	119.1(2)	C9-C10-C11	120.7(2)
C6-C11-C10	121.0(2)	C13-C12-07	116.7(1)
C13-C12-08	123.1(2)	07-C12-08	120.2(2)
C12-C13-C14	120.9(2)	C12-C13-C18	118.9(2)
C14-C13-C18	120,2(2)	C13-C14-C15	119.7(2)
C14-C15-C16	119.9(2)	C15-C16-C17	120.3(2)
C16-C17-C18	120.3(2)	C13-C18-C17	119.6(2)
Fe?-N1-05	171.7(2)	Fe2-N2-06	176,0(2)
C5-07-C12	114.6(1)	Fel-08-C12	113.6(1)

.

*) Analytische Laboratorien Malissa & Reuter, Gummersbach.

Trieisen-Komplex 13: Zu einer kräftig gerührten Suspension von 1 (2.09 g, 10.00 mmol) und 12 (2.62 g, 10.00 mmol) in 50 ml trokkenem Ether tropfte man bei Raumtemperatur 2 (1.16 ml, 10.00 mmol). Unter heftiger Gasentwicklung (CO, CO₂) färbte sich die Lösung dunkler. Nach 4 h wurde von polaren, unlöslichen (Zersetzungs-)Produkten abfiltriert (über SiO2) und das Lösungsmittel im Rotationsverdampfer abgezogen; beim Zuströmen von Argon traten keine Zersetzungsdämpfe auf. Der dunkle, teilweise feste Rückstand wurde ca. 12 h bei - 18 °C aufbewahrt. Die Masse wurde an SiO₂ zuerst mit n-Pentan/Toluol (4:1) eluiert. Aufarbeitung des rotbraunen Eluats ergab als Hauptprodukt der Reaktion Mischkristalle von Fe(CO)₄(PPh₃)/Fe(CO)(NO)₂(PPh₃). Anschließendes Eluieren mit Ether/Toluol (1:1) und Abdampfen des Lösungsmittels ergab eine teerige Masse, die nochmals an SiO2 mit Ether/n-Pentan (1:1) chromatographiert wurde. Die erste Fraktion (teerig) wurde verworfen, die zweite ergab nach Umkristallisation aus CH2Cl2/n-Hexan 0.07 g (0.10 mmol, 3%) schwarze, glitzernde Kriställchen vom Schmp. 222 °C (Zers.). – IR: $\tilde{v} = 2050 \text{ cm}^{-1}$, 2000, 1985, 1970, 1950, 1940, 1925, 1870, 1750, 1440, 1105, 980, 750, 720, 690. - ¹H-NMR: $\delta = 7.75$ (m, 9H), 7.58 (m, 6H). $- {}^{13}$ C-NMR: $\delta = 213.7$, 135.7, 135.0, 134.2, 133.9, 133.8, 133.4, 133.3, 133.2, 133.0, 129.4, 129.2, 129.0, 128.2, 128.1, 128.1. $-^{31}$ P-NMR: $\delta = 61.60$. - Molmassenbestimmung: 681.8

 $\begin{array}{c} C_{26}H_{15}Fe_3N_2O_9P \ (697.9) \\ \text{Ber. C } 44.74 \ H \ 2.17 \ Fe \ 24.01 \ N \ 4.01 \ P \ 4.44 \\ \text{Gef. C } 44.66 \ H \ 1.93 \ N \ 4.04 \\ \text{Gef. C } 44.58 \ H \ 2.25 \ Fe \ 23.70 \ N \ 4.04 \ P \ 4.63 \ ^*) \end{array}$

Kristall- und Molekülstrukturen von 8 und 13: Geeignete Einkristalle wurden aus CH_2Cl_2/n -Hexan/n-Pentan erhalten. Kristall- und Zelldaten sowie Parameter für Datensammlungen, Strukturlösungen und -verfeinerungen sind in Tab. 1 (8 und 13) zusammengefaßt. Bindungslängen und -winkel sind in Tab. 2 und 3 (8) bzw. Tab. 4 und 5 (13) aufgeführt; Winkel zwischen besten Ebenen sind Tab. 6 (8) zu entnehmen. Listen mit Atomkoordinaten, Temperatur- und

Tab. 4. Bindungslängen [pm] in 13

Fel-Fe2	252.6	Fel-Fe3	255.2(1)
Fel-Cl	179.4(3)	Fel-C2	180.9(3)
Fel-C3	178.3(3)	Fel-N1	194.2(2)
Fe2-Fe3	255.7	Fe2-C4	179.5(3)
Fe2-C5	178.9(3)	Fe2-C6	179.7(3)
Fe2-C8	240.9(4)	Fe2-N1	194,9(2)
Fe3-C7	178.8(3)	Fe3-C8	178.5(3)
Fe3-N1	193.2(2)	Fe 3-N2	165.6(2)
P-C9	181.4(2)	P-C15	179.9(3)
P-C21	179.3(3)	P-N1	162.9(2)
C1-01	113.8(4)	C2-02	113.0(4)
C3-03	113.6(4)	C4-04	113.9(4)
C5-05	113.9(4)	C6-06	114.1(3)
C7-07	114.3(5)	C8-08	115.7(5)
C9-C10	138.8(4)	C9-C14	137.6(4)
C10-C11	137.5(4)	C11-C12	136.3(6)
C12-C13	137.5(5)	C13-C14	138.3(4)
C15-C16	138.3(4)	C15-C20	138.9(4)
C16-C17	138.0(6)	C17-C18	136.6(7)
C18-C19	135.4(8)	C19-C20	138.3(7)
C21-C22	139.4(4)	C21-C26	140.1(5)
c22-c23	137.6(4)	C23-C24	137.5(6)
C24-C25	136.3(5)	C2 5-C2 6	137.7(5)
N2-09	116.6(3)	C-H	87.2-98.7(2.5-4.9)

Tab. 5. Bindungswinkel [°] in 13

Fe2-Fe1-Fe3	60.5	Fe2-Fe1-C1	100.0(1)
Fe3-Fe1-C1	152.4(1)	Fe2-Fe1-C2	159.7(1)
Fe3-Fe1-C2	101.4(1)	C1-Fe1-C2	93.3(1)
Fe2-Fe1-C3	98.1(1)	Fe3-Fe1-C3	109.1(1)
C1-Fe1-C3	92.0(1)	C2-Fel-C3	96.7(1)
Fe2-Fe1-N1	49.6(1)	Fe3-Fe1-N1	48.6(1)
Cl-Fel-Nl	104,2(1)	C2-Fel-N1	112.3(1)
C3-Fel-N1	145.5(1)	Fel-Fe2-Fe3	60.3
Fel-Fe2-C4	94.4(1)	Fe3-Fe2-C4	149.8(1)
Fe1-Fe2-C5	96.9(1)	Fe3-Fe2-C5	106.2(1)
C4-Fe2-C5	92.2(1)	Fel-Fe2-C6	159.4(1)
Fe3-Fe2-C6	105.4(1)	C4-Fe2-C6	93.8(1)
C5-Fe2-C6	101.7(1)	Fe1-Fe2-C8	93.8(1)
Fe3-Fe2-C8	42.0(1)	C4-Fe2-C8	167.8(1)
C5-Fe2-C8	78.0(1)	C6-Fe2-C8	81.5(1)
Fel-Fe2-N1	49.4	Fe3-Fe2-N1	48.5(1)
C4-Fe2-N1	103.2(1)	C5-Fe2-N1	143.3(1)
C6-Fe2-N1	110.2(1)	C8-Fe2-N1	89.0(1)
Fel-Fe3-Fe2	59.3	Fel-Fe3-C7	70.6(1)
Fe2-Fe3-C7	109.1(1)	Fel-Fe3-C8	111.2(1)
Fe2-Fe3-C8	64.6(1)	C7-Fe3-C8	94.9(2)
Fel-Fe3-N1	49.0	Fe2-Fe3-N1	49.1(1)
C7-Fe3-N1	119.1(1)	C8-Fe3-N1	111.4(1)
Fel-Fe3-N2	143.7(1)	Fe2-Fe3-N2	143.4(1)
C7-Fe3-N2	106.7(1)	C8-Fe3-N2	105.1(1)
N1-Fe3-N2	116.7(1)	C9-P-C15	104.8(1)
C9-P-C21	106.2(1)	C15-P-C21	108.4(1)
C9-P-N1	113.4(1)	C15-P-N1	111.5(1)
C21-P-N1	112.1(1)	Fel-C1-01	176.5(2)
Fel-C2-02	175.3(2)	Fel-C3-03	179.6(3)
Fe2-C4-04	175.7(3)	Fe2-C5-05	177,9(3)
Fe2-C6-06	177.9(2)	Fe3-C7-07	165.4(3)
Fe2-C8-Fe3	73.4(1)	Fe2-C8-08	125.3(2)
Fe3-C8-08	161.0(3)	P-C9-C10	117.2(2)
P-C9-C14	123.9(2)	C10-C9-C14	118.9(2)
C9-C10-C11	120.3(3)	C10-C11-C12	120.3(3)
C11-C12-C13	120.3(3)	C12-C13-C14	119.7(4)
C9-C14-C13	120,5(3)	P-C15-C16	121.1(2)
P-C15-C20	119.4(2)	C16-C15-C20	119.4(3)
C15-C16-C17	120.1(3)	C16-C17-C18	119.7(4)
C17-C18-C19	121,1(5)	C18-C19-C20	120.2(4)
C15-C20-C19	119,5(3)	P-C21-C22	119.2(2)
P-C21-C26	122.2(2)	C22-C21-C26	118.4(2)
C21-C22-C23	120.2(3)	C22-C23-C24	120.6(3)
C23-C24-C25	120.0(3)	C24-C25-C26	120.6(4)
C21-C26-C25	120.2(3)	Fel-N1-Fe2	81.0(1)
Fel-Nl-Fe3	82.4(1)	Fe2-N1-Fe3	82.4(1)
Fel-Nl-P	132.6(1)	Fe2-N1-P	129.0(1)
Fe3-N1-P	130.7(1)	Fe3-N2-09	174.9(3)

Tab. 6. Beste Ebenen mit Abweichungen [pm]^{a)} und Winkeln [°] in **8**

Eber	ne 1	1	Ebene 2	E	bene 3	E	bene 4
Fe1	0.00	Fe1	+ 6.60	C6	-0.20	C13	+ 0.08
Fe2	0.00	C5	-9.10	C7	0.26	C14	-0.17
C5	0.00	C12	-0.50	C8	+0.46	C15	+0.17
		07	+ 8.24	C9	-0.19	C16	
		O 8	- 5.24	C10	0.27	C17	-0.02
				C11	+0.46	C18	+0.02
Winkel zwischen Ebenen							
•	1 ur	nd 2	98.7		2 und 3	26.7	
	1 ur	nd 3	95.2		2 und 4	6.0	
	1 ur	nd 4	95.3		3 und 4	21.5	

^{a)} -: In Richtung Fe2.

Über die Bildung zweier ungewöhnlicher mehrkerniger Eisen-Komplexe

Strukturfaktoren können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52895, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1: 25875-19-8 / 2: 98-88-4 / 8: 114275-28-4 / 12: 603-35-0 / 13: 114275-29-5

- ¹⁾ F. M. Chaudhari, G. R. Knox, P. L. Pauson, J. Chem. Soc. C 1967, 2255.
- ²⁾ S. G. Davies, I. M. Dordor-Hedgecock, K. H. Sutton, J. C. Walker, Tetrahedron 42 (1986) 5123. ³⁾ L. S. Liebeskind, M. E. Welker, R. W. Fengl, J. Am. Chem. Soc.
- 108 (1986) 6328.

- 108 (1986) 6328. ⁴⁾ J.-Y. Mérour, C. Charrier, J.-L. Roustan, J. Benaïm, C. R. Acad. Sci., Ser. C, 273 (1971) 285. ⁵⁾ K.-J. Jens, T. Valeri, F. Weiss, Chem. Ber. 116 (1983) 2827. ^{6) 6a)} E. O. Fischer, V. Kiener, J. Organomet. Chem. 23 (1970) 215. ^{6b)} G. Sundararajan, J. S. Filippo, Jr., Organometallics 4

- (1985) 606. $-\frac{60}{D}$ D. Seyferth, C. M. Archer, Organometallics 5 (1986) 2527. $-\frac{60}{S}$ S. Sabo-Etienne, H. des Abbayes, L. Toupet,
- Organometallics 6 (1987) 2262.
 ^{7) 7a)} G. Tanguy, J.-C. Clement, H. des Abbayes, J. Organomet. Chem. 314 (1986) C43. ^{7b)} S. Lotz, P. H. van Rooyen, M. M.
- ⁸ D. Scyferth, T. G. Wood, Organometallics 6 (1987) 499.
 ⁹ C.-N. Chau, Y.-F. Yu, A. Wojcicki, M. Calligaris, G. Nardin, G. Balducci, Organometallics 6 (1987) 308.
- ¹⁰⁾ E. Keller, H. Vahrenkamp, Chem. Ber. 112 (1979) 2347.
 ¹¹⁾ D. F. Shriver, K. H. Whitmire in Comprehensive Organometallic Chemistry (G. Wilkinson, Hrsg.), Bd. 4, S. 296, Pergamon Press, Oxford 1982.
- OXIOTU 1962.
 ¹²⁾ ^{12a)} J. M. Landesberg, L. Katz, C. Olsen, J. Org. Chem. 37 (1972)
 930. ^{12b)} D. E. Fjare, W. L. Gladfelter, J. Am. Chem. Soc. 103 (1981) 1572; Inorg. Chem. 20 (1981) 3533. ^{12c)} T. M. Bockman,
- ¹³⁾ J. W. Faller, K. H. Chao, H. H. Murray, Organometallics **3** (1984) 1231.
- ¹⁴⁾ G. M. Sheldrick, SHELXTL Revision 4.1, Program for Crystal
- Structure Determination, Univ. of Cambridge, 1983. ¹⁵⁾ W. Hieber, H. Beutner, Z. Anorg. Allg. Chem. **320** (1963) 101.

[59/88]